Lagrangian-based simulation method using constrained Stokesian dynamics for particulate flows in microchannel

Author:

Lee Young JinORCID,Jin Howon,Kim Dae Yeon,Kang Seunghoon,Ahn Kyung HyunORCID

Abstract

A simulation method has been developed to efficiently evaluate the motion of colloidal particles in a low-Reynolds-number confined microchannel flow using a Lagrangian-based approach. In this method, the background velocity within the channel, in the absence of suspended particles, is obtained from a fluid dynamics solver and is used to update the velocity at the particle centres using the Stokesian dynamics (SD) method, which incorporates multi-body hydrodynamic interactions. As a result, instead of computing the momentum of both the fluid and particles throughout the entire computational domain, the microscopic balance equation is solved only at the particle centres, increasing the computational efficiency. To accommodate complex boundary conditions within the SD framework, imaginary particles are placed on the channel walls, allowing the mobility relation to be reformulated to apply velocity constraints to immobilized wall particles. By employing this constrained SD approach, global mobility interactions that need to be computed at each time step are limited to the interior particles, resulting in a significant reduction in computational cost. The efficiency of this study is demonstrated through case studies on particulate flows in contraction and cross-flow microchannels. By using colloidal particles that incorporate Brownian motion and inter-particle attraction, observations through the entire stages of fouling dynamics are possible, from particle inflow to channel blockage. The fouling patterns observed in the simulations are consistent with experiments conducted under the same flow conditions. This study provides an efficient approach for analysing the effect of hydrodynamic interactions on particle dynamics in microfluidics and materials processing fields while allowing for predictions about structural changes over long-time scales, including complex phenomena such as clogging.

Funder

National Research Foundation of Korea

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3