Pore-scale study of CO2 desublimation and sublimation in a packed bed during cryogenic carbon capture

Author:

Lei TimanORCID,Luo Kai H.ORCID,Hernández Pérez Francisco E.ORCID,Wang Geng,Yang JunyuORCID,Restrepo Cano JuanORCID,Im Hong G.ORCID

Abstract

Cryogenic carbon capture (CCC) is an innovative technology to desublimate $\text {CO}_2$ out of industrial flue gases. A comprehensive understanding of $\text {CO}_2$ desublimation and sublimation is essential for widespread application of CCC, which is highly challenging due to the complex physics behind. In this work, a lattice Boltzmann (LB) model is proposed to study $\text {CO}_2$ desublimation and sublimation for different operating conditions, including the bed temperature (subcooling degree $\Delta T_s$ ), gas feed rate (Péclet number $Pe $ ) and bed porosity ( $\psi$ ). The $\text {CO}_2$ desublimation and sublimation properties are reproduced. Interactions between convective $\text {CO}_2$ supply and desublimation/sublimation intensity are analysed. In the single-grain case, $Pe $ is suggested to exceed a critical value $Pe _c$ at each $\Delta T_s$ to avoid the convection-limited regime. Beyond $Pe _c$ , the $\text {CO}_2$ capture rate ( $v_c$ ) grows monotonically with $\Delta T_s$ , indicating a desublimation-limited regime. In the packed bed case, multiple grains render the convective $\text {CO}_2$ supply insufficient and make CCC operate under the convection-limited mechanism. Besides, in small- $\Delta T_s$ and high- $Pe $ tests, $\text {CO}_2$ desublimation becomes insufficient compared with convective $\text {CO}_2$ supply, thus introducing the desublimation-limited regime with severe $\text {CO}_2$ capture capacity loss ( $\eta _d$ ). Moreover, large $\psi$ enhances gas mobility while decreasing cold grain volume. A moderate porosity $\psi _c$ is recommended for improving the $\text {CO}_2$ capture performance. By analysing $v_c$ and $\eta _d$ , regime diagrams are proposed in $\Delta T_s$ $Pe $ space to show distributions of convection-limited and desublimation-limited regimes, thus suggesting optimal conditions for efficient $\text {CO}_2$ capture. This work develops a viable LB model to examine CCC under extensive operating conditions, contributing to facilitating its application.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3