Unsteady large-scale wake structure behind levitated free-stream-aligned circular cylinder

Author:

Yokota ShoORCID,Nonomura TakuORCID

Abstract

The relationships between characteristic large-scale wake structures appearing behind a free-stream-aligned circular cylinder are investigated and discussed from the velocity field obtained by wind tunnel tests. The tests were conducted under a supportless condition using a magnetic suspension and balance system and stereo PIV measurements at a Reynolds number of $3.46\times 10^4$ . The velocity fields were analysed with a modal decomposition combining azimuthal Fourier decomposition and proper orthogonal decomposition. The wake behind the free-stream-aligned circular cylinder with three different fineness ratios of 1.0, 1.5 and 2.0 was investigated, and the wake structures in a non-reattaching flow formed by the cylinder at a fineness ratio of 1.0 are mainly discussed in the present study. Four characteristic large-scale wake structures of the recirculation bubble pumping, azimuthal shear mode, large-scale vortex shedding and streaks are identified and mainly focused on in the present study. The state of the vortex shedding is classified into three: anticlockwise/clockwise circular and flapping patterns. Each state has a relationship with the azimuthal shear mode and it tends to appear when the state is circular. Furthermore, from the analysis of the relationship between modes, the recirculation bubble pumping is found to be related to the vortex shedding position in the radial direction and the strength of the streaks. Particularly, analysis of causality shows that the recirculation bubble pumping is affected by them in the low-frequency range.

Funder

Japan Society for the Promotion of Science

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3