Bifurcation of equilibrium positions for ellipsoidal particles in inertial shear flows between two walls

Author:

Lauricella GiuseppeORCID,Naderi Mohammad MoeinORCID,Zhou JianORCID,Papautsky IanORCID,Peng ZhangliORCID

Abstract

We conducted a systematic numerical investigation of spherical, prolate and oblate particles in an inertial shear flow between two parallel walls, using smoothed particle hydrodynamics (SPH). It was previously shown that above a critical Reynolds number, spherical particles experience a supercritical pitchfork bifurcation of the equilibrium position in shear flow between two parallel walls, namely that the central equilibrium position becomes unstable, leading to the emergence of two new off-centre stable positions (Fox et al., J. Fluid Mech., vol. 915, 2021). This phenomenon was unexpected given the symmetry of the system. In addition to confirming this finding, we found, surprisingly, that ellipsoidal particles can also return to the centre position from the off-centre positions when the particle Reynolds number is further increased, while spherical particles become unstable under this increased Reynolds number. By utilizing both SPH and the finite element method for flow visualization, we explained the underlining mechanism of this reverse of bifurcation by altered streamwise vorticity and symmetry breaking of pressure. Furthermore, we expanded our investigation to include asymmetric particles, a novel aspect that had not been previously modelled, and we observed similar trends in particle dynamics for both symmetric and asymmetric ellipsoidal particles. While further validation through laboratory experiments is necessary, our research paves the road for development of new focusing and separation methods for shaped particles.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3