Two-interface and thin-filament approximation in Hele-Shaw channel flow

Author:

Dallaston Michael C.ORCID,Jackson Michael J.W.ORCID,Morrow Liam C.,McCue Scott W.ORCID

Abstract

When a viscous fluid partially fills a Hele-Shaw channel, and is pushed by a pressure difference, the fluid interface is unstable due to the Saffman–Taylor instability. We consider the evolution of a fluid region of finite extent, bounded between two interfaces, in the limit that the interfaces are close, that is, when the fluid region is a thin liquid filament separating two gases of different pressure. In this limit, we derive a second-order ‘thin-filament’ model that describes the normal velocity of the filament centreline, and evolution of the filament thickness, as functions of the thickness, centreline curvature and their derivatives. We show that the second-order terms in this model, that include the effect of transverse flow along the filament, are necessary to regularise the instability. Numerical simulation of the thin-filament model is shown to be in accordance with level-set computations of the complete two-interface model. Solutions ultimately evolve to form a bubble of rapidly increasing radius and decreasing thickness.

Publisher

Cambridge University Press (CUP)

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3