Abstract
We present direct numerical simulations of the splashing process between two cylindrical liquid rims. This belongs to a class of impact and collision problems with a wide range of applications in science and engineering, and motivated here by splashing of breaking ocean waves. Interfacial perturbations with a truncated white noise frequency profile are introduced to the rims before their collision, whose subsequent morphological development is simulated by solving the two-phase incompressible Navier–Stokes equation with the adaptive mesh refinement technique, within the Basilisk software environment. We first derive analytical solutions predicting the unsteady interfacial and velocity profiles of the expanding sheet forming between the two rims, and develop scaling laws for the evolution of the lamella rim under capillary deceleration. We then analyse the formation and growth of transverse ligaments ejected from the lamella rims, which we find to originate from the initial corrugated geometry of the perturbed rim surface. Novel scaling models are proposed for predicting the decay of the ligament number density due to the ongoing ligament merging phenomenon, and found to agree well with the numerical results presented here. The role of the mechanism in breaking waves is discussed further and necessary next steps in the problem are identified.
Publisher
Cambridge University Press (CUP)