Multiple stable postures of a falling object in fluids

Author:

Sun Shuyue,Tian XinliangORCID,Zhao Yakun,Chen Xing,Wen Binrong,Zhang Xiantao,Li Xin

Abstract

We present evidence revealing that an object with specific properties can exhibit multiple stable falling postures at low Reynolds numbers. By scrutinizing the force equilibrium relationship of a fixed object at various attack angles and Reynolds numbers, we introduce a methodology that can obtain the stable falling postures of the object. This method saves computational resources and more intuitively presents the results in the full parameter domain. Our findings are substantiated by free-fall tests conducted through both physical experiments and numerical simulations, which validate the existence of multiple stable solutions in accordance with the interpolation results obtained with fixed objects. Additionally, we quantify the abundance and distribution patterns of stable falling postures for a diverse range of representative shapes. This discovery highlights the existence of multiple stable solutions that are universally present across objects of different shapes. The implications of this research extend to the design, stability control and trajectory prediction of all free and controlled flights in both air and water.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3