Effect of gas content on cavitation nuclei

Author:

Alamé KarimORCID,Mahesh KrishnanORCID

Abstract

Cavitation inception originates from nuclei in a liquid. This paper proposes a Gibbs free energy approach that provides a smooth transition from homogeneous to heterogeneous nucleation when gas is present. The impact of gas content on nucleation is explored. It is found that the gas content stabilises nuclei, a phenomenon not present in pure liquid–vapour systems. This reduces the energy barrier over that required to nucleate a vapour bubble. Different gas saturation levels are studied. Gas content can significantly reduce the energy barrier required for nucleation, and under certain circumstances eliminate it. An analytic solution for the critical radius and activation energy is obtained that accounts for gas content. The classical Blake radius is recovered as a limiting case. The hysteresis between incipience and desinence is explained using the asymmetry observed in the critical radii. The solution is used to obtain the initial bubble radius, given a critical pressure condition in cavitation susceptibility meter experiments. The relationship between initial bubble diameter and critical pressure is described by an analytic solution that accounts for gas content. A model for the derivative of the cumulative nuclei histogram with respect to bubble diameter is proposed. An analytic expression is obtained that shows good agreement with decades worth of experimental data compiled by Khoo et al. (Exp. Fluids, vol. 61, issue 2, 2020, pp. 1–20) from ocean to water tunnels. The expression recovers the $-4$ power law that is observed experimentally.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Reference62 articles.

1. Arndt, R.E.A. & Keller, A.P. 1976 Free gas content effects on cavitation inception and noise in a free shear flow. In Two Phase Flow and Cavitation in Power Generation Systems, pp. 3–16. Int. Assoc. Hydraul. Res.

2. Resistance of solid surfaces to wetting by water;Wenzel;Ind. Engng Chem.,1936

3. A spar buoy for high-frequency wave measurements and detection of wave breaking in the open ocean;Pascal;J. Atmos. Ocean. Technol.,2011

4. The effects of nanoscale nuclei on cavitation;Gao;J. Fluid Mech.,2021

5. Cole, R. 1974 Boiling nucleation. In Advances in Heat Transfer, vol. 10, pp. 85–166. Elsevier.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3