Abstract
When two fluid drops touch, they coalesce due to surface tension. At early times, there is only a relatively small fluid bridge joining the drops. An asymptotic solution is presented for an inertial regime of early-time coalescence, in which inertial forces balance surface tension at leading order. It is demonstrated that viscosity nevertheless has a leading-order effect. Radial momentum is created at the tightly curved edge of the fluid bridge by the net force
$2\gamma$
(per unit length) due to surface tension. This momentum is left behind the radially expanding bridge edge in a thin viscous wake. The divergent volume flux in the wake entrains fluid from above and below the bridge, and drives an inviscid irrotational flow in the drops on the scale of the bridge radius. This flow widens the gap between the drops ahead of the bridge, and the larger gap width results in a lower rate of coalescence. Including viscosity in this way improves the agreement between theory and the available experimental and numerical data.
Funder
Engineering and Physical Sciences Research Council
Publisher
Cambridge University Press (CUP)