Converging material with two bulges

Author:

Whitehead J.A.ORCID

Abstract

In numerical studies of thermal convection that includes a layer of lighter surface fluid, the light fluid naturally forms clusters that bulge downward at downwelling sites. A curious result is that in some cases, the clusters have maximum bulging downward near the sides of the cluster instead of a single bulge downward centred above the downwelling. The fluid mechanics leading to this ‘double bulge’ formation is analysed. To accomplish this, a simplified model replaces the thermally driven convection cells with driving cells with a fixed speed. Adding a layer of dense fluid on the bottom to the previous configuration leads to bulges along the top and bottom. More importantly, this allows a new scaling that reduces the number of governing parameters from four to three and even to two in this study. The mechanism for the double bulges comes from buoyancy of the clusters. This produces localized vorticity at the sides of the cluster that has the opposite sign of the driving cells. When this vorticity is approximately the same order of magnitude as the driving cell vorticity, a divergence in the middle of each cluster leads to the double bulges. The effect can be so great that the underlying flow cells are tilted so that vertical motion is reversed under the middle of each bulge.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3