Mass transport at gas-evolving electrodes

Author:

Sepahi FarzanORCID,Verzicco RobertoORCID,Lohse DetlefORCID,Krug DominikORCID

Abstract

Direct numerical simulations are utilised to investigate mass-transfer processes at gas-evolving electrodes that experience successive formation and detachment of bubbles. The gas–liquid interface is modelled employing an immersed boundary method. We simulate the growth phase of the bubbles followed by their departure from the electrode surface in order to study the mixing induced by these processes. We find that the growth of the bubbles switches from a diffusion-limited mode at low to moderate fractional bubble coverages of the electrode to a reaction-limited growth dynamics at high coverages. Furthermore, our results indicate that the net transport within the system is governed by the effective buoyancy driving induced by the rising bubbles and that mechanisms commonly subsumed under the term ‘microconvection’ do not significantly affect the mass transport. Consequently, the resulting gas transport for different bubble sizes, current densities and electrode coverages can be collapsed onto one single curve and only depends on an effective Grashof number. The same holds for the mixing of the electrolyte when additionally taking the effect of surface blockage by attached bubbles into account. For the gas transport to the bubble, we find that the relevant Sherwood numbers also collapse onto a single curve when accounting for the driving force of bubble growth, incorporated in an effective Jakob number. Finally, linking the hydrogen transfer rates at the electrode and the bubble interface, an approximate correlation for the gas-evolution efficiency has been established. Taken together, these findings enable us to deduce parametrisations for all response parameters of the systems.

Funder

H2020 European Research Council

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Partnership for Advanced Computing in Europe AISBL

Publisher

Cambridge University Press (CUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3