Long-range two-dimensional hydrodynamic interaction between a pair of mutually repellent disks

Author:

Yariv EhudORCID,Peng Gunnar G.ORCID

Abstract

While the problem governing Stokes flow about a single particle that is subject to an external force is ill posed in two dimensions (the ‘Stokes paradox’), the related problem of two mutually repellent particles is well posed. Motivated by self-assembly phenomena in thin viscous membranes, we consider this problem in the limit of remote particles. Such limits are typically handled in the literature using reflection techniques, which provide successive approximations to the mutual hydrodynamic interactions. Since their starting point is a single particle in an unbounded fluid domain, these techniques are futile in the present two-dimensional problem. We show how this apparent contradiction is resolved via use of singular perturbations. We obtain a two-term approximation for the velocity acquired by circular disks, considering both rigid and free particle surfaces. We also illustrate our perturbation scheme for elliptic disks, deriving a renormalised single-particle velocity. The utility of our asymptotic scheme is illustrated in the general problem of hydrodynamic interaction between a cluster of remote disks.

Funder

Israel Science Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3