Abstract
Identifying the governing parameters of self-sustained oscillation is crucial for the diagnosis, prediction and control of thermoacoustic instabilities. In this paper, we propose and validate a novel method for computing the parameters of thermoacoustic oscillation in a stochastic environment, which exploits a physics-informed neural network (PINN). Specifically, we introduce a negative log-likelihood loss function that integrates the stochastic samples and the solution of the Fokker–Planck equation. The proposed framework is validated using the numerically generated signal and the experimental data obtained from an annular combustor, both before and after the supercritical Hopf bifurcation. The results of PINN-based system identification show good agreement with the actual system parameters and the original stochastic signal, with improved accuracy compared to established methods. To the best of our knowledge, this study constitutes the first demonstration of the PINN-inverse approach that uses the noise-induced dynamics of thermoacoustic systems, opening up new pathways for diagnosing and predicting the thermoacoustic behaviour of various combustion systems.
Funder
National Research Foundation of Korea
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献