Pore-scale mushy layer modelling

Author:

Amiri F.,Butler S.L.ORCID

Abstract

Equations describing mushy systems, in which solid and liquid are described as a single continuum, have been extensively studied. Most studies of mushy layers have assumed them to be ‘ideal’, such that the liquid and solid were in perfect thermodynamic equilibrium. It has become possible to simulate flows of passive porous media at the pore scale, where liquid and solid are treated as separate continua. In this contribution, we study the simplest possible mushy layers at the pore scale, modelling a single straight cylindrical pore surrounded by a cylindrical annulus representing the solid matrix. Heat and solute can be exchanged at the solid–liquid boundary. We consider harmonic temperature and concentration perturbations and examine their transport rates due to advection and diffusion and the melting and solidification driven by this transport. We compare the results of this numerical model with those of a one-dimensional ideal mushy layer and with analytical solutions valid for ideal mushy layers for small temperature variations. We demonstrate that for small values of an appropriately defined Péclet number, the results of the pore-scale model agree well with ideal mushy layer theory for both transport rates and melting. As this Péclet number increases, the temperature and concentration profiles with radius within the pore differ significantly from constant, and the behaviour of the pore-scale model differs significantly from that of an ideal mushy layer. Some effects of mechanical dispersion arise naturally in our pore-scale model and are shown to be important at high Péclet number.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3