Regressing bubble cluster dynamics as a disordered many-body system

Author:

Maeda KazukiORCID,Fuster DanielORCID

Abstract

The coherent dynamics of bubble clusters are of fundamental and industrial importance, and are elusive due to the complex interactions of disordered bubble oscillations. Here we introduce and demonstrate a method for decomposition of the Lagrangian time series of bubble dynamics data by combining theory and principal component analysis. The decomposition extracts coherent features of bubble oscillations based on their energy, in a way similar to proper orthogonal decomposition of Eulerian flow field data. This method is applied to a dataset of spherical clusters under harmonic excitation at different amplitudes, with various nuclei density and polydispersity parameters. Results indicate that the underlying correlated mode of oscillations is isolated in a single dominant feature in cavitating regimes, independent of the nuclei's parameters. A systematic data analysis procedure further suggests that this feature is globally controlled by the dynamic cloud interaction parameter of Maeda and Colonius (J. Fluid Mech., vol. 862, 2019, pp. 1105–1134) that quantifies the mean-field interactions, regardless of initial polydispersity or nonlinearity. The method provides a simplified and comprehensive representation of complex bubble dynamics as well as a new path to reduced-order modelling of cavitation and nucleation.

Funder

National Science Foundation

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3