A canonical Hamiltonian formulation of the Navier–Stokes problem

Author:

Sanders John W.ORCID,DeVoria A.C.ORCID,Washuta Nathan J.ORCID,Elamin Gafar A.ORCID,Skenes Kevin L.ORCID,Berlinghieri Joel C.ORCID

Abstract

This paper presents a novel Hamiltonian formulation of the isotropic Navier–Stokes problem based on a minimum-action principle derived from the principle of least squares. This formulation uses the velocities $u_{i}(x_{j},t)$ and pressure $p(x_{j},t)$ as the field quantities to be varied, along with canonically conjugate momenta deduced from the analysis. From these, a conserved Hamiltonian functional $H^{*}$ satisfying Hamilton's canonical equations is constructed, and the associated Hamilton–Jacobi equation is formulated for both compressible and incompressible flows. This Hamilton–Jacobi equation reduces the problem of finding four separate field quantities ( $u_{i}$ , $p$ ) to that of finding a single scalar functional in those fields – Hamilton's principal functional ${S}^{*}[u_{i},p,t]$ . Moreover, the transformation theory of Hamilton and Jacobi now provides a prescribed recipe for solving the Navier–Stokes problem: find ${S}^{*}$ . If an analytical expression for ${S}^{*}$ can be obtained, it will lead via canonical transformation to a new set of fields which are simply equal to their initial values, giving analytical expressions for the original velocity and pressure fields. Failing that, if one can only show that a complete solution to this Hamilton–Jacobi equation does or does not exist, that will also resolve the question of existence of solutions. The method employed here is not specific to the Navier–Stokes problem or even to classical mechanics, and can be applied to any traditionally non-Hamiltonian problem.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3