Near-tip correction functions for the actuator line method to improve the predicted lift and drag distributions

Author:

Trigaux FrancoisORCID,Villeneuve ThierryORCID,Dumas GuyORCID,Winckelmans GrégoireORCID

Abstract

The actuator line method (ALM) is a commonly used technique to simulate slender lifting and dragging bodies such as wings or blades. However, the accuracy of the method is significantly reduced near the tip. To quantify the loss of accuracy, translating wings with various aspect and taper ratios are simulated using several methods: wall-resolved Reynolds-averaged Navier–Stokes (RANS) simulations, an advanced ALM with two-dimensional (2-D) mollification of the force, a lifting line method, a mollified lifting line method and a vortex lattice method. Significant differences in the lift and drag distributions are found on the part of the wing where the distance to the tip is smaller than approximately 3 chords and are identified to arise from both the forces mollification and the uneven induced velocity along the chord. Correction functions acting on the lift coefficient and effective angle of attack near the wing tip are then derived for rectangular wings of various aspect ratios. They are then also applied to wings of various taper ratios using the ‘effective dimensionless distance to the tip’ as the main parameter. The application of the correction not only leads to a much improved lift distribution, but also to a more consistent drag distribution. The correction functions are also obtained for various mollification sizes, as well as for ALM with three-dimensional (3-D) mollification. These changes mostly impact the correction for the effective angle of attack. Finally, the correction is applied to simulations of the NREL Phase VI wind turbine, leading to an enhanced agreement with the experimental data.

Publisher

Cambridge University Press (CUP)

Reference45 articles.

1. Near‐wake flow simulation of a vertical axis turbine using an actuator line model

2. Simulating Airplane Aerodynamics with Body Forces: Actuator Line Method for Nonplanar Wings

3. Mikkelsen, R.F. 2004 Actuator disk methods applied to wind turbines. PhD thesis, Technical University of Denmark.

4. Actuator line method simulations for the analysis of wind turbine wakes acting on helicopters;Bühler;J. Phys.: Conf. Ser.,2018

5. Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3