On the scaling and critical layer in a turbulent boundary layer over a compliant surface

Author:

Lu Yuhui,Xiang Tianrui,Zaki Tamer A.ORCID,Katz JosephORCID

Abstract

Simultaneous time-resolved measurements of wall deformation and the 3-D velocity field in boundary layers over a compliant surface are performed by integrating Mach Zehnder interferometry with tomographic particle tracking velocimetry. The pressure is calculated by spatially integrating the material acceleration. Combining data obtained from several references, trends of the deformation r.m.s. scaled by the compliant wall thickness collapse when plotted vs pressure fluctuations scaled by the material shear modulus. For the present data, at all Reynolds numbers, the deformation waves travel at 53% of the free-stream velocity and have a preferred wavelength of three times the thickness. The latter is consistent with theoretical models. Adopting insight derived from atmospheric wind–wave interactions, the pressure–deformation correlations peak at or slightly above the ‘critical layer’, where the mean flow speed is equal to the surface wave speed. This layer is located within the log layer, and when expressed using inner variables, increases in elevation with increasing Reynolds number. For the entire region below the critical layer, wavenumber–frequency spectra of pressure and vertical velocity fluctuations indicate that the turbulence is phase locked and travels with the deformation, even for deformation amplitudes much smaller than a wall unit. In contrast, above the critical layer, the turbulence is advected at the local mean streamwise velocity, and its correlation with the deformation decays rapidly. These findings indicate that the height of the zone dominated by flow-deformation interactions is determined by the surface wave speed, and its variations are caused by deformation-induced modifications to the mean velocity profile.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3