On the use of the Astarita flow field for viscoelastic fluids to develop a generalised Newtonian fluid model incorporating flow type (GNFFTy)

Author:

Poole R.J.ORCID

Abstract

The two-dimensional, steady, homogeneous flow field proposed by Astarita (J. Rheol., vol. 35, 1991, pp. 687–689) is studied for a range of viscoelastic constitutive equations of differential form including the models due to Oldroyd (the upper and lower convected Maxwell; UCM/LCM), Phan-Thien and Tanner (simplified, linear form; sPTT) and Giesekus. As the flow is steady and homogeneous, the sPTT model results also give the FENE-P model solutions via a simple transformation of parameters. The flow field has the interesting feature that a scalar parameter may be used to vary the flow ‘type’ continuously from solid-body rotation to simple shearing to planar extension whilst the rate of deformation tensor $\boldsymbol{\mathsf{D}}$ remains constant (i.e. independent of flow type). The response of the models is probed in order to determine how a scalar ‘viscosity’ function may be rigorously constructed which includes flow-type dependence. We show that for most of these models – the Giesekus being the exception – the first and second invariants of the resulting extra stress tensor are linearly related, and for models based on the upper convected derivative, this link is simply via a material property, i.e. half the modulus. By defining a frame-invariant coordinate system with respect to the eigenvectors of $\boldsymbol{\mathsf{D}}$ , we associate a ‘viscosity’ for each of the flows to a deviatoric stress component and show how this quantity varies with the flow-type parameter. For elliptical motions, rate thinning is always observed and all models give essentially the UCM response. For strong flows, i.e. flow types containing at least some extension, thickening occurs and only a small element of extension is required to remove any shear thinning inherent in the model (e.g. as occurs in steady simple shearing for the sPTT/Giesekus models). Finally, a functional form of a viscosity equation which could incorporate flow type, but be otherwise inelastic, the so-called GNFFTy (generalised Newtonian fluid model incorporating flow type, pronounced ‘nifty’), is proposed. In the frame-invariant coordinate system proposed, this model is also capable of capturing normal-stress differences.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3