The propulsion direction of nanoparticles trapped in an acoustic field

Author:

Li PeijingORCID,Nunn Alexander R.ORCID,Brumley Douglas R.ORCID,Sader John E.ORCID,Collis Jesse F.ORCID

Abstract

Solid particles trapped in an acoustic standing wave have been observed to undergo propulsion. This phenomenon has been attributed to the generation of a steady streaming flow, with a reversal in the propulsion direction at a distinct frequency. We explain the mechanism underlying this reversal by considering the canonical problem of a sphere executing oscillatory rotation in an unbounded fluid that undergoes rectilinear oscillation; these two oscillations occur at identical frequency but with an arbitrary phase difference. Two distinct bifurcations in the flow field occur: (1) a stagnation point first forms with increasing frequency, which (2) splits into a saddle node and a vortex centre. Reversal in the propulsion direction is driven by reversal in the flow far from the sphere, which coincides with the second bifurcation. This flow is identified with that of a Stokeslet whose strength is the net force exerted on the particle, which has implications for studying the flow field around particles of non-spherical geometries and for modelling suspensions of particles in acoustic fields.

Funder

University of Melbourne

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3