Stability analysis of electro-osmotic flow in a rotating microchannel

Author:

Shit G.C.ORCID,Sengupta A.,Mondal Pranab K.ORCID

Abstract

We investigate the linear stability analysis of rotating electro-osmotic flow in confined and unconfined configurations by appealing to the Debye–Hückel approximation. Pertaining to flow in confined and unconfined domains, the stability equations are solved using the Galerkin method to obtain the stability picture. Both qualitative and quantitative aspects of Ekman spirals are examined in stable and unstable scenarios within the unconfined domain. Within the confined domain, the variation of the real growth rate and the transition to instability are analysed using the modified Routh–Hurwitz criteria, employed for the first time in this context. The stability of the underlying flow, characterized by the number of roots with a positive real part, is determined by establishing a Routhian table. The inferences of this analysis show that the velocity plane produces intriguing closed Ekman spirals, which diminish in size with an increase in the rotation speed $\omega$ . The Ekman spirals in the stable region exhibit a distinct discontinuity, indicating the dissipation of disturbances over time. In the confined domain, the flow appears consistently stable for a set of involved parameters pertinent to this analysis, such as electrokinetic parameter $K=1.5$ and rotational parameter $\omega$ approximately up to $6$ . However, the flow instabilities become evident for $K=1.5$ and $\omega \geq 6$ .

Funder

Science and Engineering Research Board

Publisher

Cambridge University Press (CUP)

Reference52 articles.

1. Liquid–solid slip on charged walls: the dramatic impact of charge distribution;Xie;Phys. Rev. Lett.,2020

2. Electric field mediated transport in nanometer diameter channels;Kemery;Langmuir,1998

3. Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids;Zhang;J. Fluid Mech.,2013

4. Electro-osmosis on inhomogeneously charged surfaces;Ajdari;Phys. Rev. Lett.,1995

5. Brask, A. , Goranovic, G. & Bruus, H. 2003 Electroosmotic pumping of nonconducting liquids by viscous drag from a secondary conducting liquid. In Proceedings of the Nanotechnology Conference and Trade Show, pp. 190–193.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3