Wave scattering and radiation by a surface-piercing vertical truncated metamaterial cylinder

Author:

Zheng S.ORCID,Liang H.ORCID,Greaves D.ORCID

Abstract

In this paper, we study wave scattering and radiation by a surface-piercing vertical truncated metamaterial cylinder composed of a closely spaced array of thin vertical barriers, between which fluid can flow. A theoretical model is developed under full depth-dependent linearised water wave theory, where an effective medium equation and effective boundary conditions are employed, respectively, to describe the fluid motion inside the cylinder and match the flow between the fluid regions in and outside the metamaterial cylinder. A damping mechanism is introduced at the surface of the fluid occupied by the metamaterial cylinder to consider the wave power dissipation in narrow gaps between the thin vertical plates. The wave excitation forces acting on the cylinder and the hydrodynamic coefficients can be calculated straightforwardly in terms of the velocity potential inside the cylinder. An alternative way is by using the velocity potential outside the cylinder, the expression of which has the reduction of the integral and an infinite accumulation that are included in the straightforward expression. The results highlight the patterns of the radiated waves induced by the oscillation of the cylinder and the characteristics of the hydrodynamic coefficients. The metamaterial cylinder when fixed in place and with a damping mechanism included is found to capture more wave power than that of a traditional axisymmetric heaving wave energy converter over a wide range of wave frequencies.

Publisher

Cambridge University Press (CUP)

Reference38 articles.

1. Whispering Bloch modes;Maling;Proc. R. Soc. A: Math. Phys. Engng Sci.,2016

2. Water wave scattering by a structured ridge on the sea bed;Porter;Ocean Engng,2022

3. Fernandes, A.C. 1989 Some corollaries for the study of two-dimensional bodies in waves. In 4th International Workshop on Water Waves and Floating Bodies, Oystese, Norway, pp. 69–72.

4. A resonant point absorber of ocean-wave power;Budal;Nature,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3