Abstract
Heated supersonic rectangular twin jets (SRTJ) with a total temperature ratio of 2, using nozzles of design Mach number 1.5 and aspect ratio 2, were investigated in flow regimes from overexpanded to the design condition (Mj = 1.3–1.5). This work complements our recently published work in unheated SRTJ using the same experimental facility (Samimy et al., J. Fluid Mech, vol. 959, 2023, A13). Localized arc filament plasma actuators (LAFPAs) were used to excite the natural instabilities in the jets, thereby controlling the flow and acoustics. The results show that the jets were coupled primarily out-of-phase in overexpanded cases, that the coupling had significant effects on the near-field (NF) pressure fluctuations, and that these fluctuations were considerably higher for in-phase than for out-of-phase coupled cases. The results also revealed that the far-field (FF) overall sound pressure level is significantly higher on the minor axis plane of the SRTJ and that the onset of Mach wave radiation contributes to the increased acoustic radiation at the peak noise direction. The LAFPAs successfully controlled the coupling and were able to reduce the NF pressure fluctuations by 10 dB. However, only 1 to 2 dB FF noise reduction at the peak noise radiation direction was achieved. The overall trends of the baseline results and response of the flow to excitation are qualitatively similar in unheated and heated cases, but the details are significantly different.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献