Abstract
The nonlinear dynamics of a helical vortex disturbed by a long-wave-instability mode is studied by direct numerical simulation. Vortex reconnection or self-reconnection of the helical vortex is shown to play a crucial role depending on the pitch of the helical vortex. For the larger pitch, a vortex ring is created after the vortex reconnection; it detaches from the remaining helical vortex, whose pitch is doubled. A vortex ring is also created for the smaller pitch; however, it forms a linked system with the remaining vortex. The topological constraint due to this linkage forces strong interaction between the different parts of the helical vortex, leading to turbulent transition.
Funder
Japan Society for the Promotion of Science
Publisher
Cambridge University Press (CUP)