Abstract
The probability density function (PDF) for the free surface elevation in an irregular sea has an integral formulation when based on the cumulant generating function. To leading order, the result is Gaussian, whereas nonlinear extensions have long been limited to Gram–Charlier series approximations. As shown recently by Fuhrman et al. (J. Fluid Mech., vol. 970, 2023, A38), however, the second-order integral can be represented exactly in closed form. The present work extends this further, enabling determination of this PDF to even higher orders. Towards this end, a new ordinary differential equation (ODE) governing the PDF is first derived. Asymptotic solutions in the limit of large surface elevation are then found, utilizing the method of dominant balance. These provide new analytical forms for the positive tail of the PDF beyond second order. These likewise clarify how high-order cumulants (involving statistical moments such as the kurtosis) govern the tail, which is shown to get heavier with each successive order. The asymptotic solutions are finally utilized to generate boundary conditions, such that the governing ODE may be solved numerically, enabling novel determination of the PDF at third and higher order. Successful comparisons with challenging data sets confirm accuracy. The methodology thus enables the PDF of the surface elevation to be determined numerically, and the asymptotic tail analytically, to any desired order. Results are worked out explicitly up to fifth order. The theoretical probability of extreme surface elevations (typical of rogue waves) may thus be assessed quantitatively for highly nonlinear irregular seas, requiring only relevant statistical quantities as input.
Funder
Danmarks Frie Forskningsfond
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献