Abstract
AbstractLet d ≥ 3 be a natural number. We show that for all finite, non-empty sets
$A \subseteq \mathbb{R}^d$
that are not contained in a translate of a hyperplane, we have$$\begin{equation*} |A-A| \geq (2d-2)|A| - O_d(|A|^{1- \delta}),\end{equation*}$$where δ > 0 is an absolute constant only depending on d. This improves upon an earlier result of Freiman, Heppes and Uhrin, and makes progress towards a conjecture of Stanchescu.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. Sums of linear transformations in higher dimensions.;Mudgal;Q. J. Math.,2019
2. Sum of sets in several dimensions.;Ruzsa;Combinatorica.,1994
3. On finite difference sets.;Stanchescu;Acta Math. Hungar.,1998
4. Some estimations useful in geometry of numbers;Uhrin;Period. Math. Hungar.,1980
5. A lower estimation for the cardinality of finite difference sets in
$\mathbb{R}^n$;Freiman;Coll. Math. Soc. J. Bolyai, Budapest.,1989
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献