Projections of Poisson cut-outs in the Heisenberg group and the visual 3-sphere

Author:

DUFLOUX LAURENT,SUOMALA VILLE

Abstract

AbstractWe study projectional properties of Poisson cut-out sets E in non-Euclidean spaces. In the first Heisenbeg group \[\mathbb{H} = \mathbb{C} \times \mathbb{R}\], endowed with the Korányi metric, we show that the Hausdorff dimension of the vertical projection \[\pi (E)\] (projection along the center of \[\mathbb{H}\]) almost surely equals \[\min \{ 2,{\dim _\operatorname{H} }(E)\} \] and that \[\pi (E)\] has non-empty interior if \[{\dim _{\text{H}}}(E) > 2\]. As a corollary, this allows us to determine the Hausdorff dimension of E with respect to the Euclidean metric in terms of its Heisenberg Hausdorff dimension \[{\dim _{\text{H}}}(E)\].We also study projections in the one-point compactification of the Heisenberg group, that is, the 3-sphere \[{{\text{S}}^3}\] endowed with the visual metric d obtained by identifying \[{{\text{S}}^3}\] with the boundary of the complex hyperbolic plane. In \[{{\text{S}}^3}\], we prove a projection result that holds simultaneously for all radial projections (projections along so called “chains”). This shows that the Poisson cut-outs in \[{{\text{S}}^3}\] satisfy a strong version of the Marstrand’s projection theorem, without any exceptional directions.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3