The Funk transform as a Penrose transform

Author:

BAILEY TOBY N.,EASTWOOD MICHAEL G.,GOVER A. ROD,MASON LIONEL J.

Abstract

The Funk transform is the integral transform from the space of smooth even functions on the unit sphere S2⊂ℝ3 to itself defined by integration over great circles. One can regard this transform as a limit in a certain sense of the Penrose transform from [Copf ]ℙ2 to [Copf ]ℙ*ast;2. We exploit this viewpoint by developing a new proof of the bijectivity of the Funk transform which proceeds by considering the cohomology of a certain involutive (or formally integrable) structure on an intermediate space. This is the simplest example of what we hope will prove to be a general method of obtaining results in real integral geometry by means of complex holomorphic methods derived from the Penrose transform.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravity from holomorphic discs and celestial $$Lw_{1+\infty }$$ symmetries;Letters in Mathematical Physics;2023-10-28

2. Twistor theory at fifty: from contour integrals to twistor strings;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2017-10

3. Selfdual 4-Manifolds, Projective Surfaces, and the Dunajski-West Construction;Symmetry, Integrability and Geometry: Methods and Applications;2014-03-28

4. Trkalian fields: ray transforms and mini-twistors;Journal of Mathematical Physics;2013-10

5. Wave equations and the LeBrun-Mason correspondence;Transactions of the American Mathematical Society;2012-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3