Lie theory of finite simple groups and the Roth property

Author:

LÓPEZ PEÑA J.,MAJID S.,RIETSCH K.

Abstract

AbstractIn noncommutative geometry a ‘Lie algebra’ or bidirectional bicovariant differential calculus on a finite group is provided by a choice of an ad-stable generating subset $\mathcal{C}$ stable under inversion. We study the associated Killing form K. For the universal calculus associated to $\mathcal{C}$ = G \ {e} we show that the magnitude $\mu=\sum_{a,b\in\mathcal{C}}(K^{-1})_{a,b}$ of the Killing form is defined for all finite groups (even when K is not invertible) and that a finite group is Roth, meaning its conjugation representation contains every irreducible, iff μ ≠ 1/(N − 1) where N is the number of conjugacy classes. We show further that the Killing form is invertible in the Roth case, and that the Killing form restricted to the (N − 1)-dimensional subspace of invariant vectors is invertible iff the finite group is an almost-Roth group (meaning its conjugation representation has at most one missing irreducible). It is known [9, 10] that most nonabelian finite simple groups are Roth and that all are almost Roth. At the other extreme from the universal calculus we prove that the 2-cycles conjugacy class in any Sn has invertible Killing form, and the same for the generating conjugacy classes in the case of the dihedral groups D2n with n odd. We verify invertibility of the Killing forms of all real conjugacy classes in all nonabelian finite simple groups to order 75,000, by computer, and we conjecture this to extend to all nonabelian finite simple groups.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference27 articles.

1. The adjoint representation of group algebras and enveloping algebras

2. Sage Mathematics Software (Version 4.8);Stein;The Sage Development Team,2011

3. The Symmetric Group

4. The GAP Group GAP – Groups, Algorithms, and Programming, Version 4.4.12 (2008), http://www.gap-system.org.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entropic order parameters for the phases of QFT;Journal of High Energy Physics;2021-04

2. Quantum Spacetime;Grundlehren der mathematischen Wissenschaften;2020

3. Quantum Riemannian Structures;Grundlehren der mathematischen Wissenschaften;2020

4. Quantum Complex Structures;Grundlehren der mathematischen Wissenschaften;2020

5. Vector Fields and Differential Operators;Grundlehren der mathematischen Wissenschaften;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3