Abstract
Several recent papers have been concerned with a group G, of order 28.36.5.7, which can be represented as a collineation group in five dimensions. This collineation group is generated by harmonic inversions (projections) which leave fixed a point (the vertex) and a prime (said to be conjugate to the vertex). There are 126 projections in G and the set of 126 vertices form a configuration which is described in a paper (Hamill (3)) in which the operations of G are expressed as products of at most six projections. The group leaves invariant six algebraically independent primals; these have been determined (Todd (6)), and the equations of the simplest are given. The simplest invariant is a sextic primal, and some properties of this have been recorded in an earlier paper (Hartley (4)).
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Coxeter–Todd lattice, the Mitchell group, and related sphere packings;Mathematical Proceedings of the Cambridge Philosophical Society;1983-05
2. The rank 3 permutation representations of the finite classical groups;Transactions of the American Mathematical Society;1982
3. Generation of Linear Groups;The Geometric Vein;1981
4. The simple group of order 6048;Mathematical Proceedings of the Cambridge Philosophical Society;1960-07