Sphere tangencies, line incidences and Lie’s line-sphere correspondence

Author:

ZAHL JOSHUA

Abstract

Abstract Two spheres with centers p and q and signed radii r and s are said to be in contact if |pq|2=(rs)2. Using Lie’s line-sphere correspondence, we show that if F is a field in which –1 is not a square, then there is an isomorphism between the set of spheres in F3 and the set of lines in a suitably constructed Heisenberg group that is embedded in (F[i])3; under this isomorphism, contact between spheres translates to incidences between lines. In the past decade there has been significant progress in understanding the incidence geometry of lines in three space. The contact-incidence isomorphism allows us to translate statements about the incidence geometry of lines into statements about the contact geometry of spheres. This leads to new bounds for Erdős’ repeated distances problem in F3, and improved bounds for the number of point-sphere incidences in three dimensions. These new bounds are sharp for certain ranges of parameters.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference26 articles.

1. Combinatorial complexity bounds for arrangements of curves and spheres

2. An improved bound on the number of point-surface incidences in three dimensions;Zahl;Contrib. Discrete Math.,2013

3. The number of integral points on arcs and ovals

4. [10] Guth, L. . Polynomial methods in combinatorics. Amer. Math. Soc. (2018).

5. [23] Sharir, M. and Zlydenko, O. . Incidences between points and curves with almost two degrees of freedom. In Proc. 36th Annu. ACM Sympos. Comput. Geom. (2020).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On incidence bounds with Möbius hyperbolae in positive characteristic;Finite Fields and Their Applications;2022-02

2. On incidences of lines in regular complexes;European Journal of Combinatorics;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3