Abstract
AbstractIn this paper, for a possibly singular complex variety X, generating functions of total orbifold Chern homology classes of the symmetric products SnX are given. These are very natural “class versions” of known generating function formulae of (generalized) orbifold Euler characteristics of SnX. Our Chern classes work covariantly for proper morphisms. We state the result more generally. Let G be a finite group and Gn the wreath product G ∼ Sn. For a G-variety X and a group A, we show a “Dey–Wohlfahrt type formula“ for equivariant Chern–Schwartz–MacPherson classes associated to Gn-representations of A (Theorem 1ċ1 and 1ċ2). When X is a point, our formula is just the classical one in group theory generating numbers |Hom(A, Gn)|.
Publisher
Cambridge University Press (CUP)
Reference25 articles.
1. Classical problems in group theory (I): enumerating subgroups and homomorphisms;Yoshida;Sugaku Expositions, AMS,1996
2. �ber einen Satz von Dey und die Modulgruppe
3. Enumerative Combinatorics
4. Classes caractéristiques définies par une stratification d'une variété analytique complexe;Schwartz;C. R. Acad. Sci. Paris,1965
5. Enumerating Representations in Finite Wreath Products
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献