Units of group rings, the Bogomolov multiplier and the fake degree conjecture
-
Published:2016-09-09
Issue:1
Volume:163
Page:115-123
-
ISSN:0305-0041
-
Container-title:Mathematical Proceedings of the Cambridge Philosophical Society
-
language:en
-
Short-container-title:Math. Proc. Camb. Phil. Soc.
Author:
GARCÍA–RODRÍGUEZ JAVIER,JAIKIN–ZAPIRAIN ANDREI,JEZERNIK URBAN
Abstract
AbstractLet π be a finite p-group and ${\mathbb{F}_{q}}$ a finite field with q = pn elements. Denote by $\I_{\mathbb{F}_{q}}$ the augmentation ideal of the group ring ${\mathbb{F}_{q}}$[π]. We have found a surprising relation between the abelianization of 1 + $\I_{\mathbb{F}_{q}}$, the Bogomolov multiplier B0(π) of π and the number of conjugacy classes k(π) of π:
$$
\left | (1+\I_{\Fq})_{\ab} \right |=q^{\kk(\pi)-1}|\!\B_0(\pi)|.
In particular, if π is a finite p-group with a non-trivial Bogomolov multiplier, then 1 + $\I_{\mathbb{F}_{q}}$ is a counterexample to the fake degree conjecture proposed by M. Isaacs.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics
Reference21 articles.
1. Unipotent Algebraic Groups
2. Proof of Springer’s hypothesis
3. Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen;Schur;J. Reine Angew. Math.,1904
4. Schur multipliers and power endomorphisms of groups
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献