Abstract
AbstractLet A ⊂ ℝ be finite. We quantitatively improve the Balog–Wooley decomposition, that is A can be partitioned into sets B and C such that
$
\begin{equation*}
\max\{E^+(B) , E^{\times}(C)\} \lesssim |A|^{3 - 7/26}, \ \ \max \{E^+(B,A) , E^{\times}(C, A) \}\lesssim |A|^{3 - 1/4}.
\end{equation*}
$
We use similar decompositions to improve upon various sum–product estimates. For instance, we show
$
\begin{equation*}
|A+A| + |A A| \gtrsim |A|^{4/3 + 5/5277}.
\end{equation*}
$
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A sum-bracket theorem for simple Lie algebras;Journal of Algebra;2023-10
2. Semialgebraic Methods and Generalized Sum-Product Phenomena;DISCRETE ANAL;2022
3. On Sum Sets and Convex Functions;The Electronic Journal of Combinatorics;2022-05-06
4. An update on the sum-product problem;Mathematical Proceedings of the Cambridge Philosophical Society;2021-10-11
5. Some multiplicative equations in finite fields;Finite Fields and Their Applications;2021-10