Author:
Bator Elizabeth M.,Lewis Paul W.
Abstract
A formal series Σxn in a Banach space X is said to be weakly unconditionally converging, or alternatively weakly unconditionally Cauchy (wuc) if Σ|x*(xn)| < ∞ for every continuous linear functional x* ∈ X*. A subset K of X* is called a V-subset of X* iffor each wuc series Σxn in X. Further, the Banach space X is said to have property (V) if the V-subsets of X* coincide with the relatively weakly compact subsets of X*. In a fundamental paper in 1962, Pelczynski [10] showed that the Banach space X has property (V) if and only if every unconditionally converging operator with domain X is weakly compact. In this same paper, Pelczynski also showed that all C(Ω) spaces have property (V), and asked if the abstract continuous function space C(Ω, X) has property (F) whenever X has property (F).
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献