Abstract
We use the concept of outwardly simple line families (see Hammer and Sobczyk (4)) first to obtain conditions involving mid-chords that ensure that a plane convex set is centro-symmetric, and secondly to show that it is possible to inscribe a semicircle of diameter ω in any convex set of minimal width ω in at least 3 different ways. We show that a plane convex set X is centro-symmetric if every mid-chord of X (that is every chord of X mid-way between two parallel lines of support of X) bisects the area of X, or alternatively if every mid-chord of X is a diameter of X (that is a longest chord in some direction). Hammer and Smith (3) have used outwardly simple line families in a different way to show that a plane convex set X is centro-symmetric if every diameter of X bisects the area of X, or if every diameter of X bisects the perimeter of X.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Affine diameters of convex bodies—a survey;Expositiones Mathematicae;2005-04
2. Special Convex Bodies;Handbook of Convex Geometry;1993