On the oscillations of a bowed string

Author:

Friedlander F. G.

Abstract

ABSTRACTThe small transverse oscillations of a string excited by bowing are treated by neglecting all external forces except that due to the bow, taking the ends of the string as fixed, and replacing the bow by a concentrated force acting transversely at the ‘bowing point’, whose magnitude depends on the velocity, v, of the string at this point. Non-linear recurrence equations for v are obtained, from which some of the principal features of the motion can be inferred, and some qualitative conditions about the dependence of the transverse force of the bow on v can be drawn. A detailed examination of the case when the string is bowed at the mid-point shows that, in order to account for the stability of the periodic motion excited, it appears to be necessary to allow for the effect of dissipative forces, such as air friction; to a first approximation this can be done by postulating a small concentrated dissipative force at the bowing point hi addition to the frictional force exerted by the bow. The theory predicts that for small bowing speeds a ‘noise’ is produced instead of a note; this phenomenon does not appear to have been noted in the literature, but can easily be verified in practice.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference6 articles.

1. Dynamical theory of motion of bowed strings;Raman;Bull. Indian Ass. Cult. Sci,1918

2. Ueber Saitenschwingungen

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Models of musical string vibration;Acoustical Science and Technology;2023-05-01

2. Minimal physical model of the cristal Baschet;Acta Acustica;2023

3. Helmholtz vibrations in bowed strings;The Journal of the Acoustical Society of America;2022-04

4. Nonlinear dynamics of the wolf tone production;Journal of Sound and Vibration;2022-01

5. Physical Modeling;Springer Topics in Signal Processing;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3