Abstract
Abstract
We discuss the origin, an improved definition and the key reciprocity property of the trilinear symbol introduced by Rédei [16] in the study of 8-ranks of narrow class groups of quadratic number fields. It can be used to show that such 8-ranks are ‘governed’ by Frobenius conditions on the primes dividing the discriminant, a fact used in the recent work of A. Smith [18, 19]. In addition, we explain its impact in the progress towards proving my conjectural density for solvability of the negative Pell equation
\[{x^2} - d{y^2} = - 1\]
.
Publisher
Cambridge University Press (CUP)
Reference22 articles.
1. Construction of unipotent Galois extensions and Massey products
2. The parity of the period of the continued fraction of d
3. On the negative Pell equation;Fouvry;Ann. of Math.,2010
4. [1] Boneh, D. and Silverberg, A. . Applications of multilinear forms to cryptography. Topics in algebraic and noncommutative geometry (Luminy/Annapolis, MD, 2001). Contemp. Math. vol. 324 (Amer. Math. Soc., Providence, RI, 2003), pp. 71–90.
5. Die Anzahl der durch vier teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers J. Reine Angew.;Rédei;Math.,1934
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献