Maximal hyperbolic towers and weight in the theory of free groups

Author:

BRÜCK BENJAMIN

Abstract

AbstractWe show that in general for a given group the structure of a maximal hyperbolic tower over a free group is not canonical: we construct examples of groups having hyperbolic tower structures over free subgroups which have arbitrarily large ratios between their ranks. These groups have the same first order theory as non-abelian free groups and we use them to study the weight of types in this theory.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference18 articles.

1. Valuations, Trees, and Degenerations of Hyperbolic Structures, I

2. On the generic type of the free group

3. Elementary theory of free non-abelian groups

4. [She78] Shelah, S. . Classification theory and the number of nonisomorphic models. Studies in Logic and the Foundations of Mathematics, vol. 92. (North-Holland Publishing Co., Amsterdam-New York, 1978).

5. Diophantine geometry over groups. VI. The elementary theory of a free group;Sela;Geom. Funct. Anal,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3