Author:
CHAN MELODY,PFLUEGER NATHAN
Abstract
AbstractA Richardson variety in a flag variety is an intersection of two Schubert varieties defined by transverse flags. We define and study relative Richardson varieties, which are defined over a base scheme with a vector bundle and two flags. To do so, we generalise transversality of flags to a relative notion, versality, that allows the flags to be non-transverse over some fibers. Relative Richardson varieties share many of the geometric properties of Richardson varieties. We generalise several geometric and cohomological facts about Richardson varieties to relative Richardson varieties. We also prove that the local geometry of a relative Richardson variety is governed, in a precise sense, by the two intersecting Schubert varieties, giving a generalisation, in the flag variety case, of a theorem of Knutson–Woo–Yong; we also generalise this result to intersections of arbitrarily many relative Schubert varieties. We give an application to Brill–Noether varieties on elliptic curves, and a conjectural generalisation to higher genus curves.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献