Mod p K-theory of Ω∞Σ∞X revisited

Author:

Kashiwabara Takuji

Abstract

In this note we present a new proof of a theorem of McClure on K*ΣX, Z/p) [11], in the special case when X is a finite complex with K1(X; Z/p) = 0. Although our method does not work in the full generality covered by his work, our argument requires neither a geometric interpretation of complex k-theory nor all the delicate coherence properties of its multiplication. Since BP-theory is not likely to possess such coherence properties [9], the possibility of generalizing his approach to the case of higher Morava K-theory does not seem feasible. On the contrary, the main ingredient of our approach is the rank formula for the Morava K-theory of the Borel construction [5], which works for any K(n); thus our approach is better adapted to the potential generalization [8]. Throughout the paper we assume that p > 2 so that mod p K-theory possesses a commutative multiplication, and denote by K*(−) the mod p K-theory. Since it is simpler to state our results in terms of CX, the combinatorial model for QX, rather than QX itself, we shall do so. This is sufficient, as when X is connected CX is homotopy equivalent to QX, and when not, K*(QX) can be easily recovered from K*(CX) (see e.g. [11]).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference14 articles.

1. Splitting of certain spaces CX

2. [7] Hunton J. . Detruncating Morava K-theory. To appear in Adams Conference Proceedings.

3. On the K-theory of the extended power construction

4. A free group functor for stable homotopy

5. The transfer map and fiber bundles

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3