Abstract
AbstractLet a1, a2,… be a sequence of mutually independent, normally distributed, random variables with mathematical expectation zero and variance unity; let b1, b2,… be a set of positive constants. In this work, we obtain the average number of zeros in the interval (0, 2π) of trigonometric polynomials of the formfor large n. The case when bk = kσ (σ > − 3/2;) is studied in detail. Here the required average is (2σ + 1/2σ + 3)½.2n + o(n) for σ ≥ − ½ and of order n3/2; + σ in the remaining cases.
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. (2) Das M. The number of real zeros of certain random trigonometric polynomials—submitted to Math. Student.
2. The Number of Real Zeros of a Random Trigonometric Polynomial
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献