On arithmetically realizable classes

Author:

Burns D.

Abstract

We fix a number field L and a finite group G, and write Cl (ℤL[G]) for the reduced Grothendieck group of the category of finitely generated projective ℤL[G]-modules. We let RG denote the ring of complex characters of G, with SG the additive subgroup which is generated by the irreducible symplectic characters. We shall say that an element c ∈ Cl (ℤL[G]) is ‘(arithmetically) realizable’ if there exists a tamely ramified Galois extension N/K of number fields with LK and an identification Gal (N/K) →˜ G via which c is the class of some Gal (N/K)-stble ℤN-ideal. We let RL(G) denote the subgroup of Cl (ℤL[G]) which is generated by the realizable elements for varying N/K. Our interest in RL(G) arises from the fact that it is the largest subset of Cl (ℤL[G]) upon which the results of Chinburg and the author in [Bu, Ch] can be used to give an explicit module theoretic description of the action of the integral semi-group ring AL, G of the Adams-Cassou-Noguès-Taylor operators (ΨL, k): k ∈ ℤ, 2 × k if SG ≠ {0}}. Whilst the results of [Bu, Ch] can (at least partially) be understood ‘geometrically’ via the action of Bott cannibalistic elements on suitable Grothendieck groups (cf. [Ch, E, P, T], [Bu]), the underlying problem of finding an explicit module theoretic interpretation of the action of AL, G on all elements of Cl(ℤL[G]) is of course essentially algebraic in nature. It is in this context that we were originally motivated to investigate RL(G).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference17 articles.

1. [Ch, E, P, T] Chinburg T. , Erez B. , Pappas G. and Taylor M. J. . Arithmetic equivariant Riemann-Roch theorems, preprint, 1994.

2. Integral representations afforded by ambiguous ideals in some abelian extensions

3. [M2] McCulloh L. . Manuscript in preparation, 1994.

4. Conditions globales pour les problèmes de plongement à noyau abélien

5. [Br] Brinkhuis J. . Embedding problems and Galois modules. Thesis, University of Leiden (1981).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3