Author:
Brown Ronald,Heath Philip R.
Abstract
Suppose a group H is given as a free product with amalgamationdetermined by groups A0, A1, A2 and homomorphisms α1: A0 → A1, α2: A0 → A2. Thus H may be described as the quotient of the free product A * A2 by the relations i1 α1 (α0) = i2α2 (α0) for all α0 ∈ A0, where i1, i2 are the two injections of A1, A2 into A1 * A2. We do not assume that α1, α2 are injective, so the canonical homomorphisms α′i: Ai → H, i = 0,1,2, also need not be injective.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. Au sujet de l'existence d'adjoints à droite aux foncteurs image réciproque dans la catégorie des catégories;Conduché;C.R.A.S,1972
2. Some nonprojective subgroups of free topological groups
3. Free products of topological groups with a closed subgroup amalgamated
4. Pullback functors and crossed complexes;Howie;Cah. Top. Géom. Diff,1979
5. On the foundations of k-group theory;LaMartin;Diss. Math,1977
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Homotopy theory, and change of base for groupoids and multiple groupoids;Applied Categorical Structures;1996
2. Lifting amalgams and other colimits of monoids;Mathematical Proceedings of the Cambridge Philosophical Society;1990-07
3. Lifting colimits in various categories;Mathematical Proceedings of the Cambridge Philosophical Society;1988-09