Abstract
Abstract
Let
$t:{\mathbb F_p} \to C$
be a complex valued function on
${\mathbb F_p}$
. A classical problem in analytic number theory is bounding the maximum
$$M(t): = \mathop {\max }\limits_{0 \le H < p} \left| {{1 \over {\sqrt p }}\sum\limits_{0 \le n < H} {t(n)} } \right|$$
of the absolute value of the incomplete sums
$(1/\sqrt p )\sum\nolimits_{0 \le n < H} {t(n)} $
. In this very general context one of the most important results is the Pólya–Vinogradov bound
$$M(t) \le {\left\| {\hat t} \right\|_\infty }\log 3p,$$
where
$\hat t:{\mathbb F_p} \to \mathbb C$
is the normalized Fourier transform of t. In this paper we provide a lower bound for certain incomplete Kloosterman sums, namely we prove that for any
$\varepsilon > 0$
there exists a large subset of
$a \in \mathbb F_p^ \times $
such that for
$${\rm{k}}{1_{a,1,p}}:x \mapsto e((ax + \bar x)/p)$$
we have
$$M({\rm{k}}{1_{a,1,p}}) \ge \left( {{{1 - \varepsilon } \over {\sqrt 2 \pi }} + o(1)} \right)\log \log p,$$
as
$p \to \infty $
. Finally, we prove a result on the growth of the moments of
${\{ M({\rm{k}}{1_{a,1,p}})\} _{a \in \mathbb F_p^ \times }}$
.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献