Author:
GHOSH DIPANKAR,PUTHENPURAKAL TONY J.
Abstract
AbstractLet A be a local complete intersection ring. Let M, N be two finitely generated A-modules and I an ideal of A. We prove that
$$\bigcup_{i\geqslant 0}\bigcup_{n \geqslant 0}{\rm Ass}_A\left({\rm Ext}_A^i(M,N/I^n N)\right)$$
is a finite set. Moreover, we prove that there exist i0, n0 ⩾ 0 such that for all i ⩾ i0 and n ⩾ n0, we have
$$\begin{linenomath}\begin{subeqnarray*}
{\rm Ass}_A\left({\rm Ext}_A^{2i}(M,N/I^nN)\right) &=& {\rm Ass}_A\left({\rm Ext}_A^{2 i_0}(M,N/I^{n_0}N)\right), \\
{\rm Ass}_A\left({\rm Ext}_A^{2i+1}(M,N/I^nN)\right) &=& {\rm Ass}_A\left({\rm Ext}_A^{2 i_0 + 1}(M,N/I^{n_0}N)\right).
\end{subeqnarray*}\end{linenomath}$$
We also prove the analogous results for complete intersection rings which arise in algebraic geometry. Further, we prove that the complexity cxA(M, N/InN) is constant for all sufficiently large n.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献