Author:
Collingwood E. F.,Lohwater A. J.
Abstract
Let f (z) be meromorphic and non-rational in the domain |z| < R ≤ ∞, and let a be an arbitrary complex number, which may be infinite. The deficiency δ(a) of the value a is defined bywhere m(r, a), N(r, a) and T(r) are defined as usual (cf. (10), pp. 156 ff.). For the class of functions considered in this paper the characteristic function T(r) is unbounded, and this will be assumed throughout. The upper (or Valiron) deficiency (16) of the value a is denned byfrom which it follows that 0 ≤ δ(a) ≤ Δ(a) ≤ 1. A value a for which Δ(a) > 0 is called exceptional or deficient, and a value for which Δ(a) = 0 is called normal. We shall denote by G[a, σ] the open set of all values z in | z | < R for which | f(z) – a | < σ, where σ is a given positive number; we shall say that a component Gn[a, σ] of G[a, a] is bounded if the closure G¯n[a, σ] is contained in | z | < R, otherwise Gn[a, σ] will be called unbounded. In the case a = ∞, it is natural to define Gn[∞, σ] as the set of all z for which | f(z) | > 1/σ.
Publisher
Cambridge University Press (CUP)
Reference20 articles.
1. Sur les singularités de certaines fonctions holomorphes et de leurs inverses;Valiron;J. Math. pures appl.,1936
2. Sur un théorème de MM. Seidel-Beurling
3. Zum Verhalten analytiseher Funktionen in Bereichen, deren Rand eine wesentliche Singularität enthält;Iversen;Ofversigt Vet.-Soc. Förh.,1921
4. Zum Verhalten analytischer Funktionen in der Umgebung singul�rer Stellen
5. Sur l'allure à la frontière des fonctions harmoniques, sousharmoniques ou. holomorphes;Brelot;Bull. Soc. Roy. Sci.,1939
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献