Abstract
AbstractLet$(X\ni x,B)$be an lc surface germ. If$X\ni x$is klt, we show that there exists a divisor computing the minimal log discrepancy of$(X\ni x,B)$that is a Kollár component of$X\ni x$. If$B\not=0$or$X\ni x$is not Du Val, we show that any divisor computing the minimal log discrepancy of$(X\ni x,B)$is a potential lc place of$X\ni x$. This extends a result of Blum and Kawakita who independently showed that any divisor computing the minimal log discrepancy on a smooth surface is a potential lc place.
Publisher
Cambridge University Press (CUP)
Reference42 articles.
1. A boundedness conjecture for minimal log
discrepancies on a fixed germ
2. [38] Shokurov, V. V. . 3–fold log models. J. Math. Sciences 81 (1996), 2677–2699.
3. [6] Borisov, A. A. . Minimal discrepancies of toric singularities. Manuscripta Math. 92 (1997), no. 1, 33–45.
4. An optimal gap of minimal log discrepancies of threefold non-canonical singularities
5. [40] Shokurov, V. V. . Letters of a bi-rationalist, V. Minimal log discrepancies and termination of log flips (Russian). Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i Prilozh., 328-351
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献