Abstract
A complex or system ∞3 of conics in space of four dimensions is such that a finite number of conics pass through an arbitrary point. Linear complexes are those for which this number is unity, and are such that their curves are defined by conditions of incidence with fixed surfaces, curves and points. In this paper are discussed briefly the linear complexes defined by the condition that their curves meet an irreducible curve in four points. Denoting by a curve of order m and genus p it is found that the curves in question are The complex associated with is considered in greater detail, since it is found to have an interesting connection with the well-known Weddle quartic surface of ordinary space. In fact the conics of the system touching a space (of three dimensions) do so in the points of such a surface. The main properties of this surface can be thence deduced. In addition we discuss certain results in connection with this curve . The paper closes with certain enumerative results which were obtained in the course of the researches giving the results recorded and which we believe are worth record.
Publisher
Cambridge University Press (CUP)
Reference8 articles.
1. Sopra alcune singolarità delle curve di un iperspazio;Severi;Mem. Torino,1902