Abstract
Introduction. The space Cp is the class of operators on a Hilbert space for which the norm ∥K∥p = [trace (KK*)P/2]/p is finite. Equivalently, a compact operator is in Cp ifwhere the μn are the so-called ‘singular values’ of K (characteristic values of the non-negative compact operator [K] ≡ (KK*)½). The case p = 2 gives the familiar class of Hilbert–Schmidt operators, while C1 is the collection of trace-class or nuclear operators considered by Schatten(12), Lidskii(11), and Gohberg and Krein(7), among others.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. Remarque Sur la Convergence Absolue des Séries de Fourier
2. Integraloperatoren der Spurklasse
3. Non-solfadjoint operators with trace;Lidskii;Doki. Akad. Nauk SSSR,1959
4. Sur une classe d’équations fonctionnelles
5. Remarque sur un théorème do M. Zygmund;Waraszkiewicz;Pol. Akad. Umiej. Krakow Wydz. Mat.-Przy. A.,1929
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Singular numbers of smooth kernels. II;Mathematical Proceedings of the Cambridge Philosophical Society;1989-01
2. Singular numbers of smooth kernels;Mathematical Proceedings of the Cambridge Philosophical Society;1988-05
3. Operator Ideals with a Trace;Mathematische Nachrichten;1981
4. Bibliography;Operator Ideals;1980
5. Square-integrable kernels and growth estimates for their singular values;Bulletin of the American Mathematical Society;1974